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A theory of dynamic vibration absorbers for an elastically mounted rotating
Rayleigh beam under a distributed load is presented. The novel features due to
rotational motion are demonstrated via a numerical example of a paper machine
roll with dynamic absorbers attached to the bearing houses. Depending on the
horizontal to vertical bearing stiffness ratio, the optimal frequency response
function may exhibit three peaks of equal height instead of the conventional two.
It is also shown that the optimal values for absorber stiffness and damping depend
significantly on the rotational speed of the beam and asymmetry of the bearing
support. Finally, the effectiveness of the optimal absorber is analysed as a function
of the absorber size and rotational speed.
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1. INTRODUCTION

The dynamic vibration absorber or simply dynamic absorber was invented at the
beginning of the 20th century by Frahm [1], and since then, it has proven to be
an indispensable device to reduce the undesirable vibrations in many applications
such as gas turbines and engines, ship rolling, helicopters, electrical transmission
lines etc. The discrete dynamic absorber was first analysed by Ormondroyd and
Den Hartog [2], and the optimum damping was later derived by Brock [3]. Their
studies covered a main system consisting of a mass and spring and a dynamic
absorber with a mass, spring and viscous damper. For this system it was possible
to obtain analytical expressions for the optimum tuning and damping of the
absorber. Later, Thompson [4] extended the study to a viscously damped main
system. He presented a numerical method, based on the frequency locus
construction, for the determination of the optimum tuning and damping.

Young [5] was the first to consider the application of dynamic absorbers to
beams. Snowdon [6] considered the optimization of the discrete absorber on beams
with various boundary conditions when structural damping was present. Jacquot
[7] used an approximate method in which the analogy established between a beam
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and a SDOF system allowed the use of the optimal absorber parameters for the
latter to determine the ones for the beam. The main system damping was not
included in his theory so that the analytical results of Den Hartog and Brock could
be applied. Özgüven and Candir [8] extended Jacquot’s treatment by considering
a structurally damped beam with two dynamic absorbers for suppressing the first
two resonances of the beam. A further extension was recently made by
Manikanahally and Crocker [9] who included mounted rigid masses in their beam
model.

The dynamics of rotating machinery constitute a comprehensive and important
field of engineering applications. The previous works, however, do not account for
the rotational motion of the beam. The gyroscopic coupling due to rotation
connects the vertical and horizontal motions which, as will be shown, has a
considerable effect on the optimal tuning and effectiveness of the absorber. In
section 2 a general solution for the frequency response function of a uniform
rotating Rayleigh beam is presented and the boundary conditions accounting for
elastic supports and vertical dynamic absorbers are formed. Damping is included
in both the main system and the absorbers. In section 3 the optimization procedure
is considered. The optimization consists of minimizing the maximum of the
frequency response function in the vicinity of the original resonance that is to be
attenuated. In section 4 novel features in the optimal absorber design due to the
rotational motion are demonstrated by studying an example of a paper machine
roll with dynamic absorbers at its ends. The optimum tuning and damping for the
absorbers are determined by solving the associated min-max problem numerically.
Finally, the conclusions are drawn in section 5.

2. THEORY

The equations of motion of a uniform rotating Rayleigh beam (see Figure 1)
can be written in the inertial co-ordinates as

rAü− rIü0−2rIVv̇0+Ci (u̇+Vv)+EIu2= fu , (1)

rAv̈− rIv̈0+2rIVu̇0+Ci (v̇−Vu)+EIv2= fv , (2)

Figure 1. Spinning Rayleigh beam resting on springs and viscous dampers. The dynamic absorbers
are also shown. The theory is developed for the limit a:0.
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where u(Z, t) and v(Z, t) are the horizontal and vertical displacement fields,
respectively, and fu (Z, t) and fv (Z, t) are the components of an external harmonic
load. The density, cross-sectional area, moment of area, modulus of elasticity and
rotational speed around the +Z-axis for the beam are r, A, I, E and V,
respectively. The internal damping of the beam, proportional to the velocity of the
beam relative to the rotating co-ordinate system, is accounted for by the viscous
damping coefficient Ci . Under the harmonic load fu = f
 u eivt and fv = f
 v eivt, the
complex steady state amplitudes û(Z) and v̂(Z) are determined by the equations

û2+
r

E
v2û0−2i

r

E
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EI

v2û+i
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where i=z−1 is the imaginary unit. The general solution of equations (3) and
(4) can be shown to be

û(Z)= s
4

n=1

{[A−
n + g−

n (Z)]F−
n (Z)+ [A+
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4
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where the basis functions are given by

F2
1 (Z)= sin n2Z, F2

2 (Z)= cos n2Z,

F2
3 (Z)= sinh k2Z, F2

4 (Z)= cosh k2Z, (7)

the complex coefficients by
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and the g-functions accounting for the load by

g2
1 (Z)=−g

Z

0

f
 u (z)2 if
 v (z)
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cos n2z dz, (10)
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2EIn2(n22 + k22)

sin n2z dz, (11)
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g2
3 (Z)=g

Z

0

f
 u (z)2 if
 v (z)
2EIk2(n22 + k22)

cosh k2z dz, (12)

g2
4 (Z)= −g

Z

0

f
 u (z)2 if
 v (z)
2EIk2(n22 + k22)

sinh k2z dz. (13)

The boundary conditions of the problem are determined by the springs and
dampers at the beam ends (see Figure 1) and the dynamic absorbers which here
are assumed to execute vertical motion at the beam ends as well. The spring
constants and viscous damping coefficients in the horizontal and vertical directions
are Ku , Cu , Kv and Cv , respectively. The length of the beam is L. The steady state
boundary conditions (14)–(21) and equations of motion for the absorbers (22) and
(23) can be shown to be

EIû1(0)+ rIv2û'(0)−2irIVvv̂'(0)+ (Ku +ivCu )û(0)=0, (14)

EIv̂1(0)+ rIv2v̂'(0)+2irIVvû'(0)+ (Kv +ivCv )v̂(0)= (ka +ivca )V
 0, (15)

û0(0)=0, (16)

v̂0(0)=0, (17)

EIû1(L)+ rIv2û'(L)−2irIVvv̂'(L)− (Ku +ivCu )û(L)=0, (18)

−EIv̂1(L)− rIv2v̂'(L)−2irIVvû'(L)+ (Kv +ivCv )v̂(L)= (ka +ivca )V
 L , (19)

û0(L)=0, (20)

v̂0(L)=0, (21)

(ka +ivca −mav
2)V
 0 = (ka +ivca )v̂(0), (22)

(ka +ivca −mav
2)V
 L =(ka +ivca )v̂(L), (23)

where the notations

Kv =Kv + ka , (24)

Cv =Cv + ca (25)

have been used. Above ma , ca and ka are the mass, damping coefficient and spring
constant of the absorbers, and V
 0 and V
 L the steady state amplitudes of the
absorber displacements at the beam ends, respectively. The unknown coefficients
A2

n (n=1, . . . , 4), V
 0 and V
 L can be solved by substituting the solutions (5) and
(6) into the equations (14)–(23). Although the above equations are restricted to
the case of identical vertical absorbers, the analysis is general enough to provide
a straightforward extension to the case of dissimilar absorbers in both vertical and
horizontal directions.

Since the goal in the following is to suppress the beam response due to vertical
load, the following case is considered:

f
 u =0, f
 v =F(Z), (26)
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where the load function F(Z) is normalized (in SI units) as

>F>=X1
L g

L

0

=F(Z)=2 dZ=1. (27)

The corresponding steady state solutions û(Z, v) and v̂(Z, v) are called the
horizontal and vertical frequency response functions at Z, respectively.

3. OPTIMUM ABSORBER PARAMETERS

For non-rotating beams and discrete systems, the determination of the optimum
absorber parameters is considered by several authors. The absence of damping in
the main system has enabled authors to obtain closed form expressions for the
optimum absorber parameters [3, 7]. The optimization procedure is based on the
existence of two fixed points on the family of frequency response curves. The
absorber is tuned so that the two fixed points represent equal amplitudes and the
damping is selected as the average of the values rendering the response curve
horizontal at either fixed point. If there is damping in the main system, the
frequency response curves do not exhibit any fixed points. Thus the peak values
of the response have to be examined. On the amplitude response surface
H=H(c, v), two separate saddle points will exist where the conditions
1H/1c= 1H/1v=0 are satisfied. By careful selection of the absorber spring
stiffness, these two saddle points may be adjusted to equal elevations and the
average of the damping values corresponding to the saddle points are taken as the
optimum [4]. Alternatively, the optimum parameters may be determined
numerically by finding the values of the absorber tuning and damping which
minimize the maximum of the response within a frequency range including the
resonance to be suppressed. This min-max problem is solved by first finding the
maximum of the two peaks (due to the absorber and original beam resonances)
using a global maximization algorithm, and then by determining the tuning and
damping values to minimize this maximum value [8]. That is, for a predetermined
value of absorber mass, find minca,ka Hmax, where

Hmax(ca , ka )=max
v$I

H(v; ca , ka ). (28)

Here H denotes the amplitude response at a selected point of the beam and I an
interval enclosing the frequency range concerned in the neighbourhood of the
original resonance. It should be pointed out that the function Hmax(ca , ka ) is not
differentiable at its minimum. In the vicinity of the optimal point (ca , ka ), the
saddle points of H are almost at equal elevations. Consequently, the particular
saddle point which determines the value of the function Hmax changes abruptly in
the neighbourhood of the optimal point. Since the partial derivatives 1H/1ca and
1H/1ka are unequal for different saddle points, the function Hmax develops a sharp
edge or apex at the optimal point.

Let us now consider the case of a rotating beam with rotational speed V.
Although any desired combination of the horizontal and vertical responses may
be chosen as the objective function to be minimized, we consider in what follows



.   .  658

T 1

Structural parameters used in the example

Parameter Notation Value

Modulus of elasticity E 2·106×1011 N m−2

Cross sectional area A 0·1257 m2

Roll density r 7830 kg m−3

Moment of area I 1·010×10−2 m4

Vertical bearing stiffness Kv 6·0×108 N m−1

Horizontal and vertical bearing damping coefficients Cu , Cv 3·94×104 Ns m−1

Internal damping coefficient for the roll tube Ci 807·65 Ns m−2

Absorber mass ma 300 kg

the case of a vertical objective function to illustrate the basic phenomena due to
rotation, providing an easy comparison with earlier work on non-rotating beams.
If the vertical harmonic load on the beam is represented by f
 v =F(Z), where
>F>=1, the corresponding vertical frequency response function at a selected point
is determined by H= v̂(v; ca , ka , V). Due to the rotational motion, novel features
in the response appear. Firstly, the frequency response function may exhibit (with
respect to v$I) three local maxima instead of one or two. Secondly, the number
of maxima at equal elevations in the optimal situation, called here primary maxima
(see section 4), may be one, two or three. For example, if the number of primary
maxima is three, the surface Hmax(ca , ka ) takes the form of a tetrahedron standing
on its apex and the contour lines constitute a set of nested triangles. Therefore,
the optimal point cannot be found using numerical algorithms employing function
gradients. We have successfully used the polytope method, which employs function
values only. The method is based on function comparison and no smoothness is
assumed. In the polytope method, a set of points on the surface (complex) moves
down in an ‘‘amoeba-like fashion’’ towards the minimum point by taking steps
in an adaptable manner [10].

4. APPLICATION

In order to illustrate the dependence of the optimal parameters of the dynamic
absorbers on the rotational speed of the beam V, the present theory is applied to
the case of a paper machine roll. We specify a harmonic vertical unit load on the
roll by f
 v =1 and calculate the corresponding response v̂(v; ca , ka , V) at L/2, i.e.,
the vertical frequency response function at the centre of the roll. The parameter
values used in the calculations are shown in Table 1. In the calculated examples
below, we concentrate on the suppression of the lowest vertical beam resonance
at 151 rad s−1.

Let us consider the effect of the rotational speed V and the horizontal bearing
stiffness Ku on the vertical frequency response function. Note that the gyroscopic
coupling term in the horizontal equation of motion (1) is −2rIVv̇0, i.e., the larger
the value of V the stronger the coupling. Under vertical harmonic forcing with a
specified frequency, the quantity v̇0 executes harmonic steady state oscillations
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with the very same frequency. Since the frequency range of primary interest here
lies in the neighbourhood of the lowest resonance frequency of the vertical beam
motion, the amplitude of the horizontal response is determined, not only by V,
but also by the location of the horizontal beam resonance with respect to the
vertical one. When the horizontal and vertical resonances are close to each other,
the energy transfer between these perpendicular directions becomes significant,
leading to considerable changes in the optimal absorber parameter values. Note
also that the horizontal motion couples back to the vertical motion via the term
2rIVu̇0. Depending on the phase of this term relative to that of the vertical load
fv , the gyroscopic coupling may increase or decrease the vertical vibration
amplitude.

In Figure 2 the vertical frequency response function at L/2 without the
gyroscopic coupling term (V=0) is shown for the case of no dynamic absorbers
and dynamic absorbers with ma =300 kg and optimum tuning and damping. The
behaviour is similar to that of the analogous discrete systems [2] and non-rotating
beams with absorbers [7, 8]: the original resonance peak is split into two (left and
right) peaks of equal height on either side of the original one. The effect of V and
Ku on the roll response can be seen in Figure 3(a)–(e) which display the vertical
and horizontal frequency response functions at L/2 for five values of Ku each with
three values of V. The corresponding horizontal resonance frequencies of the beam
(without absorbers and gyroscopic coupling) are 145, 149, 151, 154 and
157 rad s−1. In Figure 3(a) the horizontal resonance lies well below the vertical
ones. The vertical load drives the horizontal motion via the gyroscopic coupling
term leading to a maximum in the horizontal response close to the horizontal
resonance frequency. At the same time, a decrease in the vertical amplitude occurs
indicating that vibrational energy leaks from the vertical to the horizontal motion.
This decrease (or antiresonance) is caused by a destructive interference of the
external load and the gyroscopic coupling term 2rIVu̇0 due to a steep change in
the phase angle of u when traversing the horizontal resonance. As a result, the
vertical frequency response function develops a minimum and, consequently, a

Figure 2. Vertical frequency response function at roll centre for the non-rotating beam in the case
of no absorbers (solid line) and optimal absorbers with ma =300 kg (dashed line).



2.5

2.0

1.5

1.0

0.5

2.5

2.0

1.5

1.0

0.5

2.5

2.0

1.5

1.0

0.5

2.5

2.0

1.5

1.0

0.5

2.5

2.0

1.5

1.0

0.5

145140 150 155 160 165

/f
  

( 
  

m
/N

)
^

^

(e)
5

4

3

2

1

145140 150 155 160 165

(rad/s)

u
/f

  
( 

  
m

/N
)

^
^

(d)
5

4

3

2

1

(c)
5

4

2

1

1

(b)
5

4

3

2

1

(a)
5

4

3

2

1

.   .  660

Figure 3. Development of the vertical and horizontal frequency response functions at roll centre
for various values of Ku and V. The values of the horizontal to vertical bearing stiffness ratio are
64, 85, 100, 138 and 200% in (a)–(e), respectively. The values of V are 50, 160 and 220 rad s−1 (solid,
dashed and dotted lines, respectively).

third maximum for sufficiently large values of V. However, this third maximum
lies well below the two original ones and does not participate in the optimization
procedure. For this reason we call this a secondary maximum whereas the two
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others are called primary maxima. In Figure 3(b) the horizontal resonance has
entered the region of the left vertical resonance. For V=50 rad s−1 all three
maxima are primary whereas for V=160 and 220 rad s−1 only the two right ones
are. This can easily be understood in terms of the deepening antiresonance. In
Figure 3(c) the antiresonance occurs between the left and right vertical resonances.
This leads to a further deepening of the minimum and no third maximum appears.
In Figure 3(d) the horizontal resonance lies slightly above the right vertical
resonance. For small V only a minor antiresonance can be seen and the two left
maxima are primary. The increase of V suppresses the two right maxima
developing a deep antiresonance. In this case, however, a strong new primary
maximum appears due to the energy supply back from the horizontal to the
vertical motion caused by a steep change in the phase angle of the gyroscopic term
when the horizontal resonance is traversed (constructive interference). In Figure
3(e) the horizontal resonance lies well above the original vertical resonance. For
V=50 rad s−1 the gyroscopic coupling is so small that the horizontal resonance
hardly becomes visible in the vertical motion. However, when V becomes larger,
the effect of the coupling increases significantly. For V=160 rad s−1 the third
maximum is clearly visible although not yet a primary one. A moderate increase
in V would lead to three primary maxima and a further increase in V suppresses
the middle maximum leading to the case of two primary maxima as shown for
V=220 rad s−1.

The calculated optimal absorber parameters ca and ka as a function of the
rotational speed for four values of Ku are shown in Figure 4. It can be seen that
for 64% stiffness ratio the curves are smooth and almost independent of V. This
behaviour is evident from Figure 3(a), since the horizontal resonance is far from
the primary maxima and, therefore, the vertical motion is not affected by the
gyroscopic coupling markedly. For 85% stiffness ratio the curves are non-smooth
consisting of three smooth parts. The sharp corners occur at points where the
number of primary maxima changes [see Figure 3(b)]. Also, the dependence of the
optimal parameters on V is much stronger now. When the antiresonance occurs
in the middle region between the original two maxima, as in the case of 100%
stiffness ratio, only two primary maxima exist [see Figure 3(c)] and the optimal

Figure 4. Optimal (a) damping coefficient ca and (b) spring constant ka for the absorbers as a
function of the rotational speed V for 64, 85, 100 and 138% horizontal to vertical bearing stiffness
ratios (solid, dashed, dashed-dotted and dotted lines, respectively).
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Figure 5. Amplitude reduction factor as a function of the absorber mass. The values of V are 0
and 220 rad s−1 (from top to bottom).

parameter curves are smooth. For 138% stiffness ratio the alternating primary
maxima lead again to the non-smooth behaviour and strong V-dependence of the
optimal curves. The corners occur at V=60 and 90 rad s−1. Below 60 rad s−1 the
two leftmost maxima are primary, between 60 and 90 rad s−1 all three are, and
above 90 rad s−1 the two remaining ones are primary. Note that ca exhibits a rapid
rise already at 60 rad s−1 whereas ka starts its rise at 90 rad s−1. For still higher
stiffness ratios the optimal curves remain qualitatively similar to the 138% case
but are shifted to the right on the V-axis. The rapid growth in the curves, however,
corresponding to the rise of the rightmost maximum to a primary one, is still
enhanced and the corresponding humps become higher. For 300% stiffness ratio,
for example, the optimal damping and tuning undergo in the range
0QVQ 300 rad s−1 altogether 91% and 7% relative changes, respectively. Note
that ca seems to be more sensitive to the gyroscopic coupling.

From a practical point of view the effectiveness of the absorber is of considerable
interest. In order to study this, the amplitude reduction factor h will be defined as
the ratio of the maximum value of the frequency response function (close to the
lowest resonance) of the optimally tuned roll to that of the same roll without
absorbers. The function h as a function of the absorber mass is plotted in Figure
5 for two values of V. The values of h fall steeply near the origin indicating that
even small absorber masses lead to a considerable vibration attenuation. When the
absorber mass increases further, h levels out and only a minor improvement is
obtained. An increase in V leads to a considerable decrease in h since the resonance
peaks without dynamic absorbers become higher due to the feedback mechanism
caused by the gyroscopic coupling. The particularly good values of h in Figure 5
are partly due to the main system damping values which correspond to a lightly
damped paper machine roll. However, even with heavily damped rolls, values of
h around 30% can easily be achieved.
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5. CONCLUSIONS

A closed form analytic solution for a rotating Rayleigh beam driven by an
arbitrary harmonic load is presented. The boundary conditions are determined by
horizontal and vertical translational springs, viscous dampers and vertical
dynamic absorbers at the ends of the beam. The treatment of the field variables
is general, however, and can be combined with any linear boundary conditions and
additional dynamic absorbers as well. Due to the linearity of the problem the
extension to an arbitrary time periodic load is also straightforward. From the
optimization point of view, the present situation is more complex than the
conventional one, where the optimization is based on the existence of two fixed
points (no primary damping) [7] or two saddle points (with primary damping) [4].
Even so, a cost-effective calculation of the frequency response function is possible
due to the analytical solution of the beam field equations. The optimization
procedure for the dynamic absorbers in the present study is based on the min-max
criterion of the vertical frequency response function.

As an application, a numerical example of a paper machine roll is studied. The
significant effect of the gyroscopic coupling on the optimal absorber parameters,
presented as a function of the rotational speed of the roll and bearing support
asymmetry, is demonstrated. Three resonances of the non-rotating system,
intimately coupled via the gyroscopic terms, play a role in the dynamic response.
However, either two or three local maxima of the frequency response function are
relevant (primary) in the optimization, contrary to the corresponding conventional
cases with exactly two relevant maxima. The variation in the number of relevant
maxima leads to a strong non-smooth dependence of the optimal absorber
parameters on the rotational speed. The effectiveness of the dynamic absorber as
a function of the absorber size is studied. The conclusion is that even for very small
absorber masses, a considerable vibration attenuation can be achieved. The
present theory can be utilized, for example, in suppressing nip induced vibrations
in paper machinery.

Finally, it should be pointed out that a general load on the beam excites both
the symmetrical and asymmetrical vertical modes of the beam-absorber system,
which are then coupled with the horizontal motion. In our example the load was
restricted to a symmetric one ( f
 v 0 1) so that only the absorbers-in-phase with
beam-in-phase or -antiphase vertical modes are excited. Further research should
consider antisymmetric loads as well. The present study could also be extended
by adding dynamic absorbers in the horizontal direction. This would further
improve the amplitude reduction factor.
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APPENDIX: NOMENCLATURE

A beam cross-sectional area
ca absorber damping coefficient
Ci internal damping coefficient of the beam
Cu , Cv horizontal and vertical bearing damping coefficients
Cv Cv + ca

E beam modulus of elasticity
fu , fv horizontal and vertical loads
f
 u , f
 v harmonic load amplitudes (complex)
H amplitude response; frequency response function
Hmax maximum of H with respect to v
i imaginary unit
I beam moment of area
ka absorber spring stiffness
Ku , Kv horizontal and vertical bearing stiffnesses
Kv Kv + ka

L beam length
ma absorber mass
u, v horizontal and vertical beam centre line displacements
û, v̂ harmonic displacement amplitudes (complex)
V
 0, V
 L harmonic absorber displacement amplitudes at beam ends (complex)
Z co-ordinate along beam
h amplitude reduction factor
v excitation frequency
V beam angular velocity
r beam density.


